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The theory of angular momenta and higher SU(n) symmetries 
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P N Lebedev Physical Institute, USSR Academy of Sciences, Leninsky Prospect 53, Moscow 
117333, USSR 

Received 12 January 1987 

Abstract. We discuss interrelations between generating invariants ( G I )  for the reduction 
n;':, D i p , ) +  D ( 6 8 2 _ i )  of the m-fold tensor product of SU(n)  irreducible representations 
(irreps) D ( P , )  and polynomial bases of the SU(m)  irreps D(d,,_,J, O,,,_,,_,), 0, = 
0.0, . . . , O  ( k  times). A realisation of the SU(m)  irrep D(OJ, O,, ,_,)  bases is given in terms 
of G I  for SU(2) coupling (Wigner) Coefficients. As a byproduct an expression is obtained 
for SU(2)  6-j  symbols in terms of only two Wigner coefficients. We also discuss some 
possibilities of  the analysis involved in solving the Wigner-Biedenharn problem (construc- 
tion of orthonormal sets of the Wigner coefficients) for S U ( n )  groups ( n  3 3 ) .  

1. Introduction 

The groups of unitary symmetry U(  n )  and SU( n) are used widely in various branches 
of modern theoretical physics (see, e.g., Lichtenberg 1978, Wybourne 1970, Karassiov 
1985 and references therein). To fruitfully use these symmetries in physical applications 
it is necessary to develop an adequate mathematical technique for different groups 
SU(n) .  Such a technique should include the construction of (i) bases of irreducible 
representations (irreps), (ii) Wigner-Racah algebras (Clebsch-Gordan (or Wigner) 
coefficients and their covariant combinations) and (iii) generalised coherent states (see, 
e.g., AliSauskas 1983, Butler 1975, Louck 1979, Karassiov and Shelepin 1980). However, 
these problems are solved completely enough only for the SU(2) group, and not for 
the case SU( n) with n 3 3 (see, e.g., Butler 1975, Biedenharn and Flath 1984, Black 
et a1 1983). 

The generating invariant ( G I )  method, in the form proposed by Karassiov (1976), 
may become an efficient tool for a unified solution of these problems. This method, 
introduced in the theory of physical symmetries by Van der Waerden (1932) and Weyl 
(1931,1939), has been used fruitfully by Schwinger (1952), Regge (1958) and Bargmann 
(1962) in the quantum theory of angular momenta (see also Biedenharn and Louck 
1981). 

Resnikoff (1967), Karassiov (1973), Karassiov and Shelepin (1968,1980) and 
Karassiov et a1 (1979), amongst others, extended applications of the G I  method to the 
formalism of higher groups SU( n), n z 3 t .  Specifically, Karassiov et a/  (1979) and 
Karassiov and Shelepin ( 1980) found normalised G I  for multiplicity-free Wigner 
coefficients and developed an algebraic technique for constructing G I  for arbitrary 
Wigner coefficients of SU( n) groups. Karassiov and Shelepin (1980) established a 
close connection between G I  for the Wigner coefficients and generalised coherent states 
of SU(n) groups. 

t The GI method was also applied for determining Clebsch-Gordan coefficients of other simple Lie groups 
(see, e.g., Hongoh el a /  1974, Gaskell and Sharp 1982). 
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Developing some ideas of earlier works (Moshinsky 1963, Karassiov and Shelepin 
1968), Karassiov (1985) pointed out that there is an intimate connection between the 
task of constructing orthonormalised sets of G I  for the Wigner coefficients of some 
groups SU(n) and polynomial bases for special irreps of other groups SU(m). In 
the present paper we examine this question in more detail for the case n = 2 and 
arbitrary m. 

The paper is organised as follows. After a few preliminaries in $ 2 we formulate 
the key proposition of our analysis concerning the interrelations betwen G I  and irrep 
bases of different SU( n )  groups. In $ 3  we give a recursive technique for simultaneously 
constructing orthonormalised G I  for the mth rank Wigner coefficients? of SU(2) and 
the corresponding bases of the SU( m )  irrep D( OJd,-,) ( cik a, . . , , a ( k  times)) in 
terms of Van der Waerden G I  for the Wigner coefficients of SU(2), and then we discuss 
some corollaries. In 0 4 we consider some possibilities of extending the results obtained 
to solving the Wigner-Biedenharn problem (construction of orthonormalised sets of 
the Wigner coefficients) for higher SU( n )  groups (see Wigner 1941, Biedenharn 1962). 

2. General remarks 

The starting point of our analysis is a realisation of an action of the group SU(mn)  
and of its subgroups SU( m )  and SU( n )  ( n  S m )  on a rectangular matrix IlxP l/p==l:$3 ,2 
where the group SU(n)  acts on the upper indices and the group SU(m) acts on the 
lower ones. The generators E;’ of U(mn) 1 SU(mn)  are 

E;’ = xp.,” np = a/axp (2.1) 

and generators of all other groups in our study are linear combinations of E;’; 
particularly, E;’ = E;’ - ( l / m n ) a U p a , ,  c , , ~  E E ~  are generators of SU(mn), E-’ = 
C, E:’ are those of SU(n),  etc. We also use a realisation of SU(k) irrep spaces 2&(k, 
( k  = mn, m, n )  by homogeneous polynomials ~ ( { x P } )  in variables xp and with the 
inner product 

(2.2) 

where the asterisk * denotes the complex conjugation of coefficients in 9 ( { x , } )  (cf 
Klink 1983). 

Consider the symmetric irrep D ( P )  = D(nJ, Om,-?) of SU(mn)  where P = 
( p I , p 2 , .  . . , P , , , ~ - ~ )  is the signature of the irrep, p ,  = M ,  - M,+I,  M ,  are components of 
the U(mn) irrep D [ M , ,  . . . , M,,] highest weight. From the spectral analysis of 
D(nJ, d,,-2) under the reduction SU(mn) 1 SU(m) x SU(n) (see, e.g., Zhelobenko 
1973) and complementarity of SU( m )  and SU( n )  actions on the space 2?F$’i,9”,’-2’ of 
the irrep D(nJ, 0mn-2) (see, e.g., Quesne 1973, Howe 1976) we find that the subspace 
2 ? ~ $ ~ ; j ; J 0 , ~ ~ - ~ ~ - l ) ~  2 ? ~ $ ~ $ , ~ ~ ~ ~ - 2 ’  in which the irrep D( O,-lJOm-,-l) of SU( m )  (and irrep 
D[Jn ,  of U(m)  1 SU(m))  acts, is spanned by SU(n)-invariant homogeneous 
polynomials 9 ( { x , ,  x2,  . . . , x,}) composed of the m vectors x, = (x;), i = 1,2 , .  . . , m, 

(S({XP}) I 9 ‘ ( { x 3 ) )  E E  s* ( {~p} )9 ’ ( {x ,p } ) l ,~ ,=~~ 

n [X!, . . .  xl,,]A9 ‘ 0  (2.3) 
1 = 1 , < , 2 <  < ( , , C m  

9( {x , } )  = c C({A,, ,,,I) 
J=%,  ,, 

i These coefficients correspond to the reduction n:” I D(2j,) + D(0) of the m-fold tensor product of SU(2) 
irreps D(Zj,)  (see Karassiov 1973). 
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is simultaneously an elementary invariant (component determinant) of SU( n )  and a 
minor of component determinant of SU(m)  (see Weyl 1939). In particular, the space 
2' S U ( m )  ojt- !'O,,, -,/ -I ' contains, as its basic vectors, the G I  P i P , ) ( { x , } )  for the mth rank Wigner 
coefficients of SU( n )  which correspond to the reduction 

PI =(Pi ,  a - 2 1  ( 2 . 5 )  D ( P , )  x D(P,)  x . .  . x D(P,,,)+ D(O,- , )  

with the constraints 

n, c PI = nJ 
I = ,  

( 2 . 6 ~ )  

Ei9, P, 1 ( { x ,  1) = P P ,  P, t ( {  x, 1 1 i = 1 , 2  , . . . ,  m. (2.6b) 

(Note that (2.6b) specifies both the signatures of the irreps D(p,O,-,) of SU(n)  and 

Specifically, the set { % { A  ,,... A , , , I ( { X , } ) = ~ I ~ ~ ~ . ~ , .  [ x , ,  . . . xl,,IA'l ' 8 1 :  x { , ,< , l+ l~  A, l . . . , , ,=J1  
of SU(n)  invariants in (2.3) forms both the 'symmetric basis' (the extended Weyl basis) 
(see Karassiov 1973) of D( On-lJOm-n-l) and  the G I  of the  mth rank Wigner coefficients 
for the 'symmetric' coupling scheme of irreps D ( P , )  in ( 2 . 5 )  which was investigated 
by Kumar (1966) in the case n = 2 (we refer to those as the Kumar G I  and coefficients). 

The set { S ~ A , ~  , , , ) ( { x i } ) }  is complete (and even overcomplete) but not all the G I  

${A, i  . . . A ,  )({x,}) are linearly independent and orthogonal. In physical applications 
orthonormal sets of both G I  and basic vectors of irreps are important. 

In order to define them we have to add some conditions to (2.6) which would fix 
the coupling scheme of S U ( n )  I R  i n  (2.5) or a subgroup chain 

the weights of G I  9,,,( . . . ) as vectors of 2\$)$~o~',-J~-1' .I  

U ( m )  2 S U ( m )  2 G I  2 G, 3.. .G, 3 . .  . (2.7) 

as well as supplementary quantum numbers which are eigenvalues of some mutually 
commuting Hermitian operators and label orthonormal G I  for the SU( n )  Wigner 
coefficients or basic vectors of the irrep D(bn-,JO,,-n-l) (or  D[j,,O,,-,,]). From the 
complementarity of the groups S U ( n )  and SU(m)  on the space L ? ~ $ ~ f ' y ~ '  the key 
statement of our analysis follows. ( i )  There is one-to-one correspondence between the 
types of orthonormal polynomial bases of irreps D(O,-lJO,-,_l) of SU(m)  (or 
D[j,d,,-,] of U ( m ) )  and orthonormal sets of G I  for the Wigner coefficients correspond- 
ing to (2.5), i.e. any choice of (2.7) simultaneously fixes the coupling scheme of irreps 
in (2.5), and  vice versa. ( i i )  Every polynomial realisation of orthonormal basis of the 
irrep D( On. . lJO, , -n- , ) ,  corresponding to a subgroup chain (2.7), yields simultaneously 
an orthonormal set of G I  of S U ( n )  for the corresponding coupling scheme in (2.5), 
with the same set of labelling numbers, and vice versa. 

For example, the polynomial canonical Gel'fand-Tsetlin basis of the irrep 
D[jnO,-,] defined by the chain 

U ( m )  3 U(m - 1)  3.. . 2  U(3) 2 U(2) 3 U(1) (2.8) 
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produces the set of G I  which are defined by the following successive coupling scheme 
in (2.5): 

( . . .  (((D(pldn-,)xD(P2dn-2))’D(PI+Pz-2q,q, dn-3))xD(P3dn-2)’... ) x  . . .  
x ~ ( p m d n - > ) ) +  D(dn-1). (2.9) 

The other standard coupling schemes in (2.5), when only two irreps of S U ( n )  couple 
into an intermediate irrep at any stage, correspond to non-canonical types of bases of 
irrep of U(m)  with the subgroup chains (2.7) chosen as 

U(  1) U(2)  

U ( l ) c  U(2) 

U ( l ) c  U(2) 

x U(4) c U(5) c . . . = U ( m )  ( 2 . 1 0 ~ )  

x = U ( 4 )  

U ( 1 ) c  U(2) 
U ( l ) c  U(2) x c U ( 6 ) c . .  .c U ( m )  

. . .c U(m,)  

. . . c U( m,)  
x c U ( m )  m = m ,  + m2 

(2.10b) 

(2.10c) 

with the presence of the links U( m,) x U( m , )  x U( m3)  x . . . x U( m k )  c 
U( m ,  + m, +. . . + m k )  in (2.7), i.e. with the chain containing the toroidal subgroup 
[U(l)]@“ in the final step of the reduction. 

The close connection obtained between G I  for the S U ( n )  Wigner coefficients and 
polynomial bases of the irrep D( On- ,JOm-, , - , )  allows us to develop the Wigner-Racah 
algebras of SU(n)  and the theory of bases of the S U ( m )  irreps D(On-lJOm-n-l) 
simultaneously. Thereby any results found within one theory may be interpreted in 
terms of the other. We now discuss this point in more detail for the case n =2 .  

3. Theory of  angular momenta from the viewpoint of the higher SU(m) symmetries 

The orthonormal G I  9 i , , 1 2 , 3 ) ( { x , } )  

= p ( j , j & ) [  XI x,]’-2”[ XI x3] J -q x*x,]’-2’~ J = j ,  + j ,  + j ,  (3 .1)  

(where p ( j l j 2 j 3 )  = [ ( J +  l)!II?=, ( J  -2jl)!]-1’2(-1)’-2’2 is a normalisation factor in 
accordance with (2.2) and j ,  are coupled angular momenta), for the third rank Wigner 
coefficients? of SU(2) were known long ago (Van der Waerden 1932). Schwinger 
(1952) gave a method for constructing G I  for Wigner coefficients of any rank (with 
standard coupling schemes of irreps), and Karassiov (1976) proposed a simpler tech- 
nique for this purpose. 

t These coefficients are basic quantities for constructing the Wigner-Racah algebras of SU( n) (see, e.g., 
Biedenharn and b u c k  1981, Karassiov 1973). 
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Within our method the construction of GI for mth rank Wigner coefficients repro- 
duces elementary operations of the SU(2) Wigner-Racah algebra and reduces to the 
action of operators of the type of 9 { , > ) ( { X l ,  X 2 ,  X3}), both with j 3 # 0  and j 3 = 0 ,  or 
operators [(x$k) = Xa X P X ~ ] ‘  on the product of G I  of the type of (3.1). As a result we 
obtain sets of orthonormal G I  9f’ , :~({xl ,x2, . .  . , x m } )  for the mth rank Wigner 
coefficients which are labelled by the sets { j ! } ,  a = {jlnte.} of coupled ( j , )  and intermedi- 
ate a = (jln,er) momenta (the symbol A indicates the coupling scheme) and  represented 
by quasimonomials with respect to [X,, ZJ], [x,x,] (‘concise’ form) or as weighted sums 
of the Kumar G I  (‘expanded’ form). Consider some examples. 

So, according to the algorithm, the G I  9,1:,’,2”34”sJ12 ({x,}) for fourth rank Wigner 
coefficients (with the coupling scheme ((12)(34)) has the following concise form: 

( {XI , .  . . 1 x.41) 9 J 1 z  ({x }) = @ ( 1 2 ) ( 3 4 ) ) . J 1 2  
(1 , )  I ( 1 , )  

j l 2  )( :y2 ’3 ’4 ) [2jI2+ 1 1 1 / 2  
= { m , )  ( J ’  m~ m2 j 2  -m12 m3 m4 

4 
x (-1)lIrb+ml? n (X;)”+m,(Xf)l,-” /[(it + m, ) ! ( j ,  - m, ) !]I /* 

= (-1)’I-’’Wl2+ 119{Jl~.Jl~.o)({’, 5, O ) ~ ~ J l , 1 2 , J I z ~ ( { ~ 1 ,  ~ 2 ,  U)) 

, = 1  

x ~ ~ J l z , , 3 , J 4 ) ( { ~ ,  x3, x41) 

= (-1”1-”1[2jI2+ ~11’2[(~~12)~I~1p~jlj2jl~)p~j12j7j4~ 
x [ ~ ~ ] 2 J ~ ~ [ x I x z ] ’ ~ - 2 ~ ~ ~ [ x l  U ] ’ I - ~ J ~ [ X , U ] ’ I - ~ ~ I  

x [ ~ x ~ ] ’ z - ~ l 4  ux4 ’ - - * I ,  y x ] J 2 - 2 J ~ ’  (3.2) 

where J ,  =jl+j2+j12, J 2 = j 3 + j 4 + j 1 2 .  Performing the differentions in (3.2) with the 
aid of the differential calculus in algebrae of SU(n)  vector invariants (Karassiov et a1 
1979) we obtain this GI in an  expanded form: 

9i::i({xl}) = [2j12+ 1 ] ’ ” p (  j ,  j2j12)p(j12j7j4)( - 1  )J~~z’~[x1xz]’~~2J~~[x3x4]’~-2J~~ 

[ I -  L . 3  4 

x ( J ,  -2J , ) ! (J2-2j7) ! (J l  -2j,)!(Jz-2j4)! 
J , - 2 1 ? - 0  [ ]Jl-2J,-Ci 

[ X I  x3l” [ x2x3 IP [ x I x41 x2x4 
x c  

“+p=./-2J4 a ! p ! ( J I  -2 j2 -a ) !  (JI-2j1 - p ) !  

[X I  x3] L I  + ”I[X,X,] L ,  -”I[ XIX4] L’+ ”qx x 3 L z -  ” 2  2 4  

(3 .3)  

where (i,’ I :,Z 11 ;;yJ2) are second rank Clebsch-Gordan coefficients of SU(2) correspond- 
ing to the reduction D ( 2 L l ) x D ( 2 L 2 ) - . D ( 2 L 1 + 2 L , ) ,  L 1 = J 2 / 2 - j 4 ,  L ,=J2 /2 - j3 .  
From (3.3) it follows that the matrix S =  ~ ~ S ( ~ ~ ~ 3 ~ 1 2 ) ~ ~  of the transformation from the 
Kumar G I  9;(a,hl=n,<k [x,xk]o” to the orthonomal GI ${;;)({x!}) is given in terms of 
Clebsch-Gordan coefficients rather than 6-j  symbols as is the case for a transformation 
matrix between two orthonormal sets of ci corresponding to two different standard 
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coupling schemes. Note that the matrix S-I of the transformation inverse to (3.3) is 
also expressed in terms of SU(2) Clebsch-Gordan coefficients 

= C atk alk = ak, if k < i 
k t i  

Hence we obtain an expression for 6-j symbols in the form of a weighted sum of only 
two Clebsch-Gordan coefficients. Indeed, performing the change x ,  - x3 and jl - j, , 
j12 + j 2 3  in (3.3) we obtain the expanded form of the G I  9i::;)(14"J23 ( { x , } )  for the coupling 
scheme ((23)( 14)). Then, taking into account (3.4) and defining (for 6- j  symbols) the 
formula 
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= ( - 1 cp [ ( 2jl 2 + 1 ) (2j34 + 1 ) ( 2 ~ 6  + 1 ) I  I / *  

x 9, j 1 2 , 3 4 j s 6 ) ( { J i } )  9, j ,  j , J l 2 , ( { X I  3 x2 9 Y 1 1 )  

' 9{j3,j4j14)({x3) x4,  Y 2 } ) 9 { , 5 , 6 ~ 5 6 ] ( { x 5 ,  x69 y31) 

= P ( j ,  2 j 3 4 j d ~  ( j l j 2 j 1 2 ) ~  ( j 3 j 4 h 4 ) p  (j5j6j56)( - 1 ) ' [ j l j J J ; - 2 ' 5 6  

x [ j j l j 3 ] J ; - 2 1 ~ 4  [j2j3]J;-zJ 1 2  [ xlx2 3 J i - 2 1  12[xlyl]J;-~~j,[x2yl].';-zJI 

[X~X4]';-2,34[X3Y2]Jf-2j, [ x4 ] J ; - 2 j 3 [ x , x 6 ] 4 ' - 2 j ~ 6  

x ~ ~ , y ~ ~ ~ - ~ ~ ~ [ x ~ y ~ ] ' ; - Z j 5 [ ( 2 j , ~ +  1 ) ( 2 j ~ ~ +  1)(2js6+ I ) ] " ~  
J f  - ' 9 =j12+j34+j56+jl +j3+js- j2- j4- j6  -1, +j2+j12 

J :  =j3+j4+j34 J T  = j ,  + j ,  + j,, J ;  =j12+j34+j56 .  (3 .7)  
Now we discuss the results obtained in the light of the discussion of the previous 

section, In accordance with it the above algorithm gives recurrence procedures for 
constructing orthonormal bases of irreps D( OJO,,-,) of SU(  m ) ,  m > 2, with all possible 
subgroup chains like (2 .8)  and (2.10) and therefore the sets { j , ,  . . . , j,,}, a label these 
bases completely. In particular, the algorithm provides a realisation of the Gel'fand- 
Tsetlin bases {e ; }  of irreps D(OJO,,-,) which is different from other known forms 
(see, e.g., Nagel and Moshinsky 1965, Wu 1971, Fujiwara and Horiuchi 1982). There- 
fore a linear connection exists between { j , } ,  a and parameters m, of the Gel'fand- 
Tsetlin pattern p =[mol .  For example, the G I  from (3 .2)  and (3 .3)  give concise and 
expanded forms, respectively, for vectors of the Gel'fand-Tsetlin basis of S U ( 4 )  irrep 
D( OJO). Therefore 

1 - 1  4 

2j, = mk,- mki-1 2 j I 2  = m I 2 -  17122 J =  j i  (3 .8)  
k = l  k = l  i = l  

(cf Klink (1983)  where Gel'fand-Tsetlin pattern of SU(  n )  irreps are used for labelling 
S U ( 2 )  coupling vectors within another approach). 

Note that our technique also allows us to construct bases of SU(  m )  irreps D(J - 
a, a, in terms of S U ( 2 )  GI .  Indeed, fixing the S U ( 2 )  vector x,,~ in G I ,  which 
correspond to vectors of the S U ( m  + 1 )  irrep D(OJO,,-,), we obtain vectors of the 
S U (  m )  irrep D( J - a,  a ,  Specifically, setting x4 = ei = (a:), i = 1,2 ,  in (3 .2) ,  we 
obtain some vectors of the S U ( 3 )  irrep D(J - a ,  a )  (see also Karassiov and Shelepin 
1968). 

Furthermore, the above results allow us to reinterpret other results of the theory 
of angular momenta in terms of irreps D(OJO,,_,) of higher groups S U ( m ) .  
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Specifically, the mth rank Wigner coefficients of SU(2) may be considered as second 
rank Clebsch-Gordan coefficients of SU( m )  for the reduction D(Jd,,-?) x D(JO,,-,)- 
D(OJO,,-,) and 3n-j symbols of SU(2) may be treated as matrix elements of a 
transformation between the bases, belonging to different types, of groups SU( m ) .  We 
emphasise that such an outlook which originates, as a matter of fact, from Regge’s 
work (Regge 1958) is useful both for constructing a unified theory of SU( m )  symmetries 
and determining various properties of particular quantities (cf Karassiov et a1 1979, 
AliSauskas 1983, Fujiwara and Horiuchi 1982). 

4. Conclusion 

Unlike the previous case n = 2 we do not have any explicit analytical expression for 
the orthonormal G I  S ~ p , p , p , ) ( { x ,  I i = 1,2,  . . . , 3 n  -3}) for the third rank Wigner 
coefficients corresponding to the reduction 

D ( P i ) X  D ( P 2 ) X D ( P 3 ) +  D(0n-i) (4.1) 

with any admissible signatures P, = ( p i ,  p i ,  . . . , p L - , )  of irreps D( P,) (the label y 
distinguishes equivalent irreps D( p,) in the Clebsch-Gordan series D( P , )  x D( P 2 )  = 
Z p 3  v ( P 3 ) D ( P 3 ) ,  p ,  = ( p i _ l , .  . . , p i ,  p ; ) ) ,  whose bases are realised in terms of ( n  - 1 )  
vectors x,. Therefore we cannot extend the recurrence procedure ofthe previous section 
for constructing both orthonormal G I  of SU(n) ,  n 2 3 ,  and polynomial bases of 
D( b n - l J O , , - n - i )  of SU( m )  with any standard coupling schemes or subgroup chains. 

However, we have obtained explicit analytical expressions for the G I  9,,, , p 2 , p , l ( { x , } )  
when one signature in (4.1) has the form P, = ( p i o n - * )  (Karassiov and Shelepin 1980). 
This result allows us to obtain a polynomial realisation for the Gel’fand-Tsetlin bases 
of irreps D(On~,JO, , -n- l )  of SU(m) and the corresponding G I  of SU(n)  in the form 
(2.3). 

As for the G I  for the reduction (4.1) we may proceed as follows. Using the 
identification of these G I  with basis vectors of the U(3n - 3 )  irrep D[j,d2,-,] for the 
non-canonical subgroup chain U(3n - 3 )  2 [ U ( n  - l)Io3 we may construct them as 
linear combinations of the Gel’fand-Tsetlin basic vectors (in the above polynomial 
realisation). For determining the coefficients of these expansions we have a set of 
algebraic equations which follow from the conditions that G I  5 [ p , ) ( { x , } )  should be 
eigenvectors of the [U(n - l)IB3 Casimir operators and of extra operators r, with the 
eigenvalues y,,  y = (7,) (see Racah 1964) which may be taken as mutually commuting 
S[U(n - l)Io3 scalars in the enveloping algebra of the group SU(3n - 3 )  (or in a larger 
operator set). (We note that it is sufficient to determine G I  for standard realisation of 
bases of irreps D(P, )  in terms of ( n  - 1 )  vectors x, when these G I  are the highest vectors 
with respect to subgroup S[U(n - l)Io3 of SU(3n - 3).)  An example of such a procedure 
has been given by us (Karassiov and Shchelock 1986) for the case n = 3. Our analysis 
has shown that many conditions of this sort reduce to fixing some numbers m,] in the 
Gel’fand-Tsetlin pattern p = [mil] of the appropriate vectors (which establishes inter- 
esting interrelations between bases of different types) whereas non-trivial equations 
are generated only by the Casimir operators of one subgroups SU( n - 1 )  c U( n - 1 )  
and the operators r,. We still need further study to obtain an optimal calculational 
scheme for realising this idea in general cases; the main problems to be resolved here 
are: a suitable choice of the operators r,, determination of the spectra { y , }  and an 
explicit construction of operators shifting the eigenvalues yi (cf Van der Jeugt er a1 
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1983). One can also use an  alternative scheme for finding G I  .!F[,,l({x,}) based on 
explicitly constructing the orthonormal set of the Wigner operators in the GI-like form 
with the aid of the operators xP, 27 (cf Louck 1979, Biedenharn and Flath 1984). 

In conclusion we emphasise that the analysis carried out above gives new interesting 
possibilities concerning a way of developing a unified mathematical technique of SU( n) 
symmetries and of other classical groups and supergroups (cf Ol’shanskii and Prati 
1985, Howe 1976). 
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